
Naval Research Laboratory AD-A255 865
Nashlngton, DC 20375-5320

NR]IFPO5510-92-9515

Talking to InterFIS:
Adding Speech Input to a Natural Language Interface

STEPHANIE S. EVERETT, KENNETH WAUCHOPE, AND DENNIS PERZANOWSKI

Navy Center for Applied Research in Artificial Intelligence
Information Technology Division

September 11, 1992

I~te, OLFM

N aL

NA

Approved for public release; distribution unlimited.

Pulic reporting buraden for t"is collection of information io estimated to average I hotr pet response, including tOe time for reviewing instructione. searefeng existing data "owes
gathering end maintaining Ohe data needed. end completing and reviewing the collection of information. send comments regarding this burden estimate or any other aspect of tise
collection of ddformation. includinig euggeetione for reducing tise burden. to Waeldngton Headquarters Service@, Directorate for information operatione &Wd Reports. 12115.Jefferson

Davs Hiwy. suite 1204. Arlington. VA 22202-4302, enid to the office of Management arW Budget. Paperwork Reduction Project (0704-0138), Washington DC 20603.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

4. TTLEAND UBTTLE5. FUNDING NUMBERS

Talking to InterFIS: Adding Speech Input to a Natural Language Interface PE -62234N

TA -RS34-C74-000

WU -DN2573

6. AUTHOR(S)

Stephanie S. Everett, Kenneth Wauchope,
and Dennis Perzanowski

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Naval Research Laboratory

Washington, DC 20375-5320 L/R51 9255

9. SPONSORING/MONITORING AGENCY NAMEIS) AND ADDRESS(ES) 10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

Office of Naval Research
Arlington, VA 22217

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILr1Y STATEMENT 1 2b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

This report discusses the addition of speech recognition capabilities to InterFIS, the natural language interface to the Fault
Isolation Shell (FIS), an expert system for troubleshooting electronics equipment. Because of the limitations of today's speech
recognition technology, the addition of this capability affects the structure and flexibility of the interface; the consequences and
implications of this are discussed in detail in this report. The speech recognition module is described, and a brief evaluation of
system performance is presented.

14. SUBJECT TERMS 16. NUMBER OF PAGES

Natural language processing Speech recognition 16
Human-computer interface 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNLIMITED

NSN 7140-01-280-650 standard Form 290 11e1v. 2-99l

Prescribed by ANSI Stil 239-1l
293-102

CONTENTS

1. BACKGROUND 1

2. SPEECH RECOGNITION COMPONENT 1

Hardware ... I
Recognition Grammar 2
Responses to Prompts .. 4
Connecting the Speech Module to InterFIS 4

3. SYSTEM PERFORMANCE EVALUATION 4

4. GRAMMAR OPTIMIZATION 6

Grammar I 7
Grammar II .. 7
Observations ... 9

5. DISCUSSION 9

Ease of Representation .. 9
Recognition Power .. 10
Redundancy of Effort ... I
Observations ... 11

6. SUMMARY .. 11

REFERENCES ... 12

Ac ;esio h r ' - -

NTIS CRA&I
DTIC TAB _l
U ln, ,:::ced -L .9

By

~~ 3Z Di bution I

Av iIa ,r ty .i
SAv 1 of 3,,:,:

ft-Il A
iii

TALKING TO INTERFIS:
ADDING SPEECH INPUT TO A NATURAL LANGUAGE INTERFACE

1. BACKGROUND

InterFIS is a natural language interface to the troubleshooting module of the Fault Isolation Shell
(FIS), which is an expert system development tool for the diagnosis of failures in analog electronics
equipment [1]. The main functions of this FIS module are (1) to compute the probability that a particular
fault hypothesis is correct after one or more tests have been performed on a particular piece of electronics
equipment, and (2) to recommend the next best test based on information supplied by the diagnostician
during a testing session. The original interface to FIS was standard keyboard input, where the
appropriate abbreviations for all commands were displayed on the screen in a large list grouped by
function [2]. A simple graphic interface was also developed, where the user invoked the commands by
clicking on screen buttons labeled according to the functional grouping [3]. Later a natural language
interface, InterFIS, was added [4].

InterFIS is a natural language understanding interface that accepts typed English commands as input.
The PROTEUS chart parser [51 performs a syntactic analysis, producing an application-independent
syntactic representation of the input sentence. This intermediate representation is mapped to
domain-specific verb models by the semantic interpreter PFQAS [51 and then converted to FIS commands
by the command translator COIN [4] (see Fig. 1). A natural language interface such as this is very
flexible because it allows the user to paraphrase commands and to enter more than one parameter or data
element at a time. For example, with InterFIS the user could type "Make a frequency test at G-IF,
whereas in the other interfaces the command would be "mt" (for "Make a test"), and the parameters
"frequency" and "G-IF" would need to be entered separately in response to a series of prompts.

However, using a natural language interface can be a drawback in this particular application, since
typing English sentences is slow and requires the use of both hands. We determined that adding speech
recognition capabilities to InterFIS would preserve the flexibility and ease of use of the natural language
interface while speeding up the interaction. Using a microphone mounted in a headset would free the
operator's hands, thus allowing him (or her) to manipulate equipment and to move about while
performing the tests. However, speech input should augment the keyboard input, not replace it. The
user should have the option of entering sentences manually in case the recognizer is having difficulty with
a particular word or phrase, or when the input is not conveniently spoken, such as with a Unix file name
(e.g., "/usr/fis/uut/uut-rreO22").

2. SPEECH RECOGNITION COMPONENT

Hardware

The speech recognition equipment used in this implementation is the Speech Input Development
System (Model DS200, Release 3.4) from Speech Systems Inc. (SSI) in Tarzana, California. It performs

Manuscript approved June 26, 1992.

EVERETT, WAUCHOPE, AND PERZANOWSKI

Phonetic Orthographic
Analysis Conversion

Syntactic Semantic Command
Analysis Interpretation Translation

(PROTEUS) (PFQAS) (COIN)

Standard

InputFIS
=Troubleshooting

MouseModule

Fig. I - The various FIS input modes show the structure of InterFIS and the relationship of
the speech recognition component to the rest of the system. The InterFIS user may enter
either spoken or typed input. However, the Standard Command and Mouse Command input
modes are mutually exclusive and are not supported by InterFIS.

speaker independent continuous speech recognition and is installed on a SPARCStation 2 from Sun
Microsystems. The recognition hardware includes a Phonetic Engine box that connects to the host
computer's RS-232 serial port, a headset-mounted microphone, and two push-to-talk devices: one
hand-held switch and one foot pedal. Input is signaled by pressing and holding either switch. The
recognition software runs on the host machine, and it includes generic male and female speaker models
and a phonetic pronunciation dictionary containing roughly 39,000 words.

The phonetic engine takes the live input speech and transforms it into a sequence of phonetic codes.
These codes are sent to the host in real time to be translated into standard English orthography. The
ASCII string produced by the SSI system is passed to InterFIS to be analyzed just as if the user had typed
in the sentence at the keyboard.

Recognition Grammar

To translate the phonetic codes into standard English, the SSI system requires a grammar generated
by the application developer using software tools supplied by SSI. The grammar must specify all the
allowable utterances for the given application, either as an exhaustive list or as a set of context-free rules.
We created a grammar containing approximately 100 rules and a vocabulary of 120 words that specifies
over 100 million sentences. This grammar is very flexible, and includes numerous synonyms and
paraphrases to make the system as comfortable to use as possible. For example, all the following
sentences map to the FIS command SHOW-HISTORY:

Show the history list.
Display the history for me.
Give me the list of tests on the graphics monitor.
List all of the tests that were run.
What is the history?
What tests have been performed?
What are the tests that you made?

Figure 2 shows the rules used to generate these sentences.

2

NRL REPORT 9515

SENTENCE --- > IMPERATIVE I QUESTION
IMPERATIVE --- > SHOWME (me) SHOW-NP (SCREENNP) I

SHOWIT SHOWNP (SCREENNP) (for me)
QUESTION --- > what ISARE the (current) LIST_NP I

what tests BE CONDUCTED
ISARE == is are
SHOWME == show give
SHOWIT == display list show give
SHOWNP --- > (the (current) LISTNP) I

(the (list of) TESTSNP) I
(all (of) the (lists I (tests (RELCLAUSE)))}

LISTNP --- > LISTTYPE (and LISTTYPE) (list I lists)
LISTTYPE == history probability active ambiguity fault
TESTSNP --- > ((performed) tests) I (tests RELCLAUSE)
RELCLAUSE --- > RELCONJ ((BE CONDUCTED) I

(you (have) CONDUCTED))
RELCONJ == that which
BE --- > were I (can be) I (have been)
CONDUCTED == made run done performed
SCREENNP --- > (on I at) the DEVICE
DEVICE == screen terminal monitor console

Fig. 2 - Sample rules frou.z the InterFIS recognition grammar. These are the rules used to generate the sample
sentences discussed above (and others). Capital letters indicate nonterminal symbols (categories); lower case
letters indicate terminal symbols (output words). An arrow specifies a production rule; equal signs specify a list
of alternative words. Vertical bars separate alternative constructions or symbols; parentheses indicate optional
items. Braces enclose sequences of symbols that act as a unit.

Our recognition grammar also allows two imperatives or two questions to be conjoined into one
utterance:

Make a best test and show all the lists.
What tests have been run and what is the total cost?

and allows binary compound noun phrases:

Show the ambiguity and probability lists.

This gives the operator considerable flexibility in utterance format and helps eliminate the repetition of
commands. Although InterFIS is capable of processing and understanding much more complex conjoined
sentences, we have restricted the speech recognition grammar to only those patterns illustrated above.
Even this limited conjoining produces over 2 billion sentences; with unlimited conjoining the number of
possible utterances is far too large, causing an acceptably high recognition error rate.

The flexibility of the speech recognition grammar does allow some rather unnatural utterances, such
as:

What are the history?
Display the tests that was run.
Redraw a new unit.
Repeat the next test on parameters.

3

EVERETr, WAUCHOPE, AND PERZANOWSKI

Though these sentences are not apt to be spoken by the user, it is possible that the recognizer could
incorrectly identify an utterance and pass an illformed sentence to InterFIS. In many cases, InterFIS is
capable of handling the illformed input without difficulty. For instance, the first two examples above are
accepted and executed because subject-verb agreement is not significant in this application. The last two
examples can be parsed by InterFIS, but they cannot be mapped to actual FIS commands, so the interface
returns error messages stating that it "cannot redraw a unit of type NEW" or "cannot repeat a test of type
NEXT". We choose to allow the production of unnatural sentences by the recognizer and rely on the
more powerful syntactic and semantic analyses of InterFIS to screen out unacceptable input. This makes
the recognition grammar easier to write, and makes the interface more forgiving, since certain "errors",
such as incorrect subject-verb agreement, do not affect the system's performance.

Responses to Prompts

When the user enters a command such as "Make a test" that requires additional information before
it can be executed, the system goes briefly into a menu-based mode (using the prompts from the original
FIS interface) and asks the user to enter the various test parameters. To maintain the hands-off character
of InterFIS at this stage, we extended the menu functions to accept either typed or spoken input. Since
the user's responses to the menu prompts are not full natural language utterances but just isolated
vocalized tokens, they are passed directly to the menu functions without any natural language processing.
For the same reason, the speech component does not use its main natural language grammar to recognize
these utterances, but a much smaller subsidiary grammar consisting simply of a list of the 27 individual
words the user can enter when in this mode. Separating the recognition process in this way increases
performance, especially on the smaller vocabulary, and reflects a natural division in the task.

Connecting the Speech Module to InterFIS

The speech system includes a library of C functions (the Phonetic Decoder Interface, or PDI) for
interfacing user applications to the speech module, and also provides a sample C program illustrating the
use of these functions. The sample program required only minor modifications to provide us with a set
of six functionE for initializing the speech system, loading a speaker model, opening a grammar and
dictionary, selecting a grammar, and reading an ASCII string from either the phonetic decoder or the
keyboard. Since InterFIS (including the PROTEUS sentence reader) is written in LISP, these six C
functions were linked into InterFIS by using the Sun Common LISP foreign function interface facility.
Finally, the PROTEUS sentence reader was modified to obtain its input string by invoking the phonetic
decoder/keyboard reader function instead of reading from the standard input.

3. SYSTEM PERFORMANCE EVALUATION

A small-scale test was conducted to assess the performance accuracy of the spoken interface in this
domain. Using software tools included as part of the SSI system, a set of 50 random sentences was
generated from the recognition grammar. Subjects (7 males, 3 females) read the sentences as they were
displayed on the computer screen. They were encouraged to familiarize themselves with each sentence
before speaking, and to speak in a "natural" way. They were instructed in the use of the push-to-talk
button, but were given no other training or practice. This test evaluated the speech recognition
component only; it did not include any natural language processing and did not provide any feedback to
the subject.

Figure 3 shows the test results. Each utterance is treated as a single entity, and as such it is either
all right or all wrong. The raw accuracy score is the basic utterance recognition score: if the string
produced by the speech recognition system is not identical to the prompt text, that utterance is wrong.

4

NRL REPORT 9515

100 1 100

S80 8
0

i ,, ~t i ;
60 6

S/A 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
Subj 1 Subj 2 Subj 3 Subj 4 Subj 5 Subj 6 Subj 7 Subj 8 Subj 9 Subj 10

- Raw accuracy
-m Functional accuracy

S/A = Speed vs accuracy setting

Fig. 3 - Recognition accuracy scores (% correct) for a set of 50 sentences. Raw accuracy is the percent of utterances correctly
recognized; functional accuracy is the percent of utterances that would have elicited the desired action or response from the
expert system even if there were errors in the recognition.

For the functional accuracy score, a given utterance is counted as correct if the string produced by the
speech recognition system would have resulted in FIS performing the desired action, even if the string
does not match the prompt. Only those strings that would have resulted in error messages or undesired
actions are counted as errors. We feel that this second score is more indicative of the actual usability of
the system.

The speed vs accuracy setting shown in Fig. 3 is a variable recognition parameter that controls the
trade-off between processing speed and recognition accuracy for the SSI system. The settings can range
from 0 to 9, with 0 being the fastest but with the least attention to accuracy, and 9 being the slowest but
having the greatest potential accuracy. The four settings tested in this evaluation were chosen to give a
profile of the trade-off curve for this grammar. The results indicate that the speed vs accuracy setting
has no significant effect on recognition performance for this implementation (t = 0.15 for raw accuracy,
t = 0.26 for functional accuracy: p > 0.05). A setting of 6 was sufficient to realize maximum
performance for all subjects. On the Sun Sparc2 used for this test all the utterances were processed in
less than 50% real time, meaning that a I s utterance would be decoded in less than 500 ms (the
processing time ratio ranged from 0.23 to 0.36). On a slower machine, the phonetic decoding speed
would probably be more of a consideration in determining the optimal speed vs accuracy setting, but in
this situation we can choose based on accuracy alone.

As can be seen from Fig. 3, the functional accuracy of the spoken interface is considerably higher
than the raw recognition accuracy. Functional accuracy averages 85.8% correct, even though the raw
accuracy averages only 57.2% correct. The difference in the scores is attributable to the structure of
the speech recognition grammar. and the fact that the recognizer always generates an acceptable command
as defined by that grammar. The flexibility of the grammar and the ability to paraphrase commands
introduce redundancy, so unless the recognizer makes major errors, the generated command will usually
produce the desired action.

EVERETT, WAUCHOPE, AND PERZANOWSKI

Subjects I through 8 had had no formal speech training and little or no experience speaking into
microphones (except telephones). The variability in their scores, especially the raw recognition accuracy
scores, is consistent with our observations of their speech habits: subjects 3, 4, and 5 all spoke quickly
and tended to mumble; subjects 7 and 8 spoke much more slowly and carefully. Subject 6 spoke fairly
carefully but had a moderate Hispanic accent. It is interesting to note that this accent did not have a
noticeable effect on the recognition scores. Subjects 9 and 10 had both had speech training and
considerable experience with microphones, including speech recognition systems. Their scores indicate
that training and practice can dramatically improve recognizer performance. The performance of the
other subjects would probably have been better if they had been instructed to speak slowly and carefully,
and they would also be expected to improve with practice.

Another way to improve accuracy scores might be to introduce an utterance acceptance threshold.
For testing purposes no threshold was used; all utterances were accepted and processed, and the closest
match determined. With an acceptance threshold, utterances scoring below a certain confidence level
would be rejected, and the user would be asked to repeat the command. This could help eliminate
incorrect responses, especially if the user misspoke, or if extraneous noise interfered with the recognition
of the command. Using analysis tools provided by SSI, it was determined that an utterance acceptance
threshold of approximately 700 (available range: 0 to 1000) would be suitable for this application.
Optimum threshold values for individual speakers ranged from 675 to 745, with a mean of 712 and a
standard deviation of 24.7.

Scores might also improve with the use of customized speaker models as opposed to the generic male
and female speaker models (included with the SSI system) that were used in this test. However, creating
a customized model requires several hours, and it is recommended only if the speaker is having
difficulties with the recognizer. For military applications it is highly preferable to use generic speaker
models, because it is not always possible to take the time for a new user to train the system. The generic
models performed quite satisfactorily for all the speakers in this tt.

On the whole, the addition of speech recognition capabilities has significantly enhanced the
"friendliness" and ease of use of the FIS system. All the researchers have found that they much prefer
using spoken input to using typed input. Spoken interaction is faster, especially compared to typing out
English commands. Speech is a comfortable, natural input mode, and frees the user's hands. Though
the recognition accuracy ;c not perfect, it rarely interferes with the operation of the system, at least for
practiced speakers. From our experience, users of InterFIS seem quite tolerant of occasional errors, even
when the action performed differs significantly from what was requested. Only when the system
repeatedly fails to understand a particular utterance do the users begin to get frustrated. After about three
failures, the users usually resort to keyboard entry of the command and then return to speech for
subsequent commands.

4. GRAMMAR OPTIMIZATION

The grammar originally developed for InterFIS (here called "Grammar I" for reference) had broad
grammatical coverage and extensive natural language processing (NLP) capabilities, but no effort had
been made to optimize its response time. The interface was powerful, but seemed unusually slow for
such a restricted domain and task, and felt uncomfortably sluggish, particularly when the comparably
slow typing of sentences at the keyboard was replaced by the rapidity of speech input. To make the
speech and natural language interface a desirable alternative to other interface modalities, we had to
significantly improve the system's response time by making the syntactic grammars more efficient.

Our syntactic grammars consist of context-free production rules augmented by syntactic constraint
rules called restrictions. The parsing algorithm is a form of generate and test: the production rules

6

NRL REPORT 9515

generate candidate analyses and the restrictions apply tests to accept or reject the candidates. A number
of possible sources of inefficiency exist in such a grammar. There could be more productions than
needed (overcoverage), resulting in too large a search space; not enough restrictions (underproscription),
resulting in an inefficiently pruned search space; or more restrictions than needed (overproscription),
spending excessive time performing unnecessary tests. Particular rules might be firing an inordinate
amount of the time, thus contributing more to the problem than other rules.

However, the addition of the speech component to the front end of the system meant that its highly
constrained grammar could be treated as a syntactic/semantic filter that would make much of the search
and constraint checking by our present syntactic grammar unnecessary. For example, if the phonetic
recognizer mistakenly heard the user say "What are the history" instead of "What is the history", the
intended meaning is still clear and we would not want an overly restrictive grammar to penalize the user
with a "Sorry, don't understand" response. Hence our objective was to determine which features of
Grammar I were primarily responsible for its inefficiency, develop a more efficient and pruned grammar
still capable of processing all the sentences passed to it by the speech component, and see if the result
showed an acceptable response time.

Grammar I

Grammar I consists of 155 phrase structure rules, 73 syntactic constraint rules or restrictions, and
one conjunction "metarule" that adds compounded versions to fifteen of the phrase structure rules.
Twenty-two of the 73 syntactic constraints are conjunction restrictions. When tested on a corpus of 52
sample sentences averaging 7 words in length, Grammar I yielded a mean parsing time of 8.3 s per
sentence, ranging from a best case of 3.3 s to a worst case of 23.0 s (these tests were run on a Sun 3/260
workstation). We found that 35% of the time spent in the test phase of the generate-and-test was to
constrain occurrences of the empty category WH (which marks the trace of a moved noun phrase) to
occur only in the context of WH-questions ("Which unitlil did you load WH[i1?") and relative clauses
("The unit[il that you loaded WHIil"). Another 32% of the time was spent applying proscriptive
restrictions like subject-verb agreement, many of which, though linguistically appropriate, are not really
necessary for ambiguity pruning in the InterFIS domain.

The remaining 33% of the testing time was spent running conjunction restrictions, even though there
were only five compounds in the entire corpus of 52 sentences. Since these restrictions only run when
a compound phrase structure analysis is being considered, it was apparent that overgeneration of candidate
compounds was the primary source of inefficiency. More specifically. fourteen of the 22 conjunction
restrictions handle a specialized construction called a CONJOMIT in which an item to the left or right
of a conjunction is omitted, as in THE ACTIVE [LISTSI AND HISTORY LISTS. Of the eight
nonterminals Grammar I allowed to be omitted in this way, only one was considered necessary for
incorporation into the speech recognizer. making the remaining CONJOMIT generation and testing by
the grammar superfluous.

Grammar I!

The new grammar we developed for speech-input InterFIS, Grammar I1, has half as many phrase
structure rules (81), half the number of empty categories (3), one-fifth as many compounded rules (3),
one-seventh the number of restrictions (10), and one-tenth the number of conjunction restrictions (2).
On the test corpus it ran an average of 5.7 times faster than Grammar 1. with a mean parsing time of
1.5 s per sentence, a best case of 0.5 s and a worst case of 4. 1 s. The worst case for Grammar II was
thus less than one second slower than the best case for Grammar i. The average response time of 1.5 s
for Grammar II felt quite acceptable in the interactive environment.

7

EVERETT, WAUCHOPE, AND PERZANOWSKI

Table I - Illustrations of Compounding Permitted in InterFIS

,oduction Illustration

Question what units did you load and what did you show?
Imperative load a unit and make a test.
Noun phrase the active list and the history list

Premodifier a new, unloaded unit
Assertion a unit was loaded and a test was made.
Passive agent was a unit loaded by you and FIS?
Prepositional phrase draw the unit on the screen and on the display.
Past tense VP* have you shown a unit and shown the lists?
Passive VP* was I shown a unit and shown the lists?
Progressive VP* are you loading a unit and showing the lists?
Untensed VP* will you load a unit and show the lists?
Relative clause the unit that you loaded and that you drew
WH question when did you load it and why?
Yes-No question did you load a unit and did you make a test?
*VP: verb phrase

Table 2 - Execution Statistics for Grammar Optimization

Grammar I Grammar II Improvement

num I s num s num s

Edges Generated
Active 40883 61.7 15633 20.4 2.6x 3.Ox
Inactive 7487 44.7 4791 19.3 1.6x 2.3x

Total 48370 106.4 20424 39.7 2.4x 2.7x

Restrictions Fired
Conjunction 15232 139.8 458 5.0 33.3x 28.Ox
Null WH 12017 146.8 3941 35.5 3.Ox 4.Ix

Other 13120 137.6 754 13.3 17.4x 10.3x

Total 40369 424.2 5153 53.8 7.8x 7.9x

Total Time 1 1530.6 h1.......i 1 5.7x__
Number of sentences: 52
Total number of words: 359
Number of conjoinings: 6 (5 sentences)

8

NRL REPORT 9515

Grammar II spent a full 66% of its time on the highly context-sensitive job of WH-pruning, and 25%
of its time on other miscellaneous restrictions. It thus spent only 9% of its test phase on conjunction
restrictions (vs 33% by Grammar 1), much more in line with the I 1% of the test sentences that actually
contained compounds. Table I lists the fifteen different types of compound admitted by Grammar I, the
first three of which were retained in Grammar II, corresponding as they do to compounds recognized by
the speech component. Grammar I! allows the CONJOMIT construction in both imperatives (e.g., "Load
(a new unit) and display a new unit") and noun phrases ("The history (list) and ambiguity lists"), although
the speech component recognizes such omissions only in specific noun phrases. Table 2 shows an overall
comparison between the two grammars. The "Edges Generated" section represents the generate phase
of chart parsing, where Active edges are incomplete constituents searching for their remaining children,
and Inactive edges are complete well-formed substring analyses. The "Restrictions Fired" are the tests
that are applied whenever particular types of active or inactive edges are generated.

Observations

Broad coverage grammars consisting of highly generalized phrase structure rules constrained by
restrictions can rapidly lead to overgeneration and overtesting. If that happens, then one should first
remove all grammar productions that are not relevant to the present domain, and keep the grammar to
the minimum size necessary and sufficient to correctly handle the anticipated input data, adding rules only
as they become necessary. In the rules that remain, one can sometimes transfer some of the "test" work
into the "generate" phase by encoding the production rules in a more constrained manner. For example,
Grammar I's treatment of compound questions was along the following lines:

<QUESTION> ::= <QUESTION> <CONJWORD> <QUESTION>.'

RESTRICTION: the first daughter of a compound may not itself
be a compound.

Here it is the restriction that enforces right-branching recursion only. In Grammar II the treatment is as
follows:

<QUESTIONS> ::= <QUESTION> I <QUESTION> "AND" <QUESTIONS>.'

The restriction is no longer needed because the production rule itself enforces the right-branching-only
constraint; the parser is steered top-down in the right direction during generate phase rather than
overgenerating bottom-up followed by pruning. This approach is not as modular as the
overgeneralize/restrict approach, introducing as it does nonterminals like QUESTIONS that are not bona
fide phrase markers in the String Grammar 161 formalism to which we try to adhere. But since the
speech recognizer serving as the front end of the system enforces these constraints in a similar manner,
it is not necessary for subsequent links in the processing chain to remain more generalized than that first
link, a topic to be explored further below.

5. DISCUSSION

Ease or Representation

Despite the convenience of working with an accurate, off-the-shelf speech recognition product
accompanied by a variety of useful development sottware, the necessity of providing the SSI speech
system with an independent grammar written in a relatively weak formalism (limited-recursive context
free rules) made it awkward to integrate into our existing NLP system.

1These rules are in the InterFIS syntactic analysis grammar (PROTEUS). They are given in Backus-Naur Form (BNF)
notation, not in the SSI notation used for the recognition grammar in Fig. 2.

9

EVERETT, WAUCHOPE, AND PERZANOWSKI

Although we could translate the context-free portion of the NLP syntactic grammar directly into SSI
notation with little difficulty, we soon found that a simple phrase structure grammar was too
unconstrained to yield an acceptable speech recognition rate. To translate the syntactic restrictions and
semantic constraints of the NLP system into SSI notation required abandoning the phrase structure
grammar approach and instead writing a semantic grammar from scratch. A semantic grammar is a
grammar written in conventional context-free notation whose nonterminal symbols are domain-specific
semantic word classes rather than syntactic phrase markers. Writing and maintaining such grammars is
notoriously difficult compared to the modular approach used in an NLP system such as InterFIS, where
each class of information (lexical information, phrase structure, co-occurrence constraints and semantic
constraints) is encoded as a separate knowledge base in a notational formalism convenient and appropriate
to the type of information being represented. Encoding these constraints in the much weaker notational
formalism of context-free rules is awkward and time-consuming, and the necessity of coordinating and
maintaining two completely different natural language grammars, one for speech recognition and the other
for structural analysis, is bothersome.

Recognition Power

Another limitation of the speech module lies in its recognition power. Alkhough the grammars for
the SSI speech recognizer are written in context-free notation, they do not support arbitrary recursion.
Though the grammar may contain recursive productions, it must be compiled with a flag limiting
recursions to some predetermined fixed number. As a result, these grammars are equivalent to
noniterative regular expression languages, or finite languages (complete enumerations of strings of
predetermined length). As such they do not even have regular-expression recognition power (Type 3 in
the Chomsky hierarchy), whereas the recognition power of our NLP system is at least that of a
context-sensitive recognizer (Type 1) and probably higher (unrestricted or Type 0). Since the speech
module sits at the front end of the system, the full capability of the NLP modules is thereby underutilized.

Recursive phrase strtures like compounds and noun modifiers (adjectives, re1'itive clauses and
prepositional phrases) are an important feature of natural language. However, their use is constrained
by human memory limitations, and can be artificially restricted by the particular demands of the
application task. The InterFIS speech grammar does not employ recursion at all. We did incorporate
binary compounding of sentences and certain noun phrases into the grammar, but these were explicitly
coded, not recursive productions. In other tasks like database management, the arbitrary nesting in user
input (e.g., "Show the salaries of all the managers who made more than the highest paid salesman they
hired last year") might make true recursion essential.

The speech module does not adhere to the philosophy of extensibility and portability around which
our NLP system has been designed. The NLP system is based on the derivation of
application-independent linguistic representations (phrase structure trees and logical forms) that are then
translated into an application-specific form (FIS commands). The linguistic representations are produced
by general-purpose interpretive modules-a parser and semantic interpreter-that have been provided with
knowledge bases (grammar, dictionary, and semantic model) appropriate to the application. In extending
the system or porting to a new application, only the knowledge bases need to be altered: the grammar
usually very little, the others somewhat more so. In each case, the modifications and additions to be
made are simple, and their effects are highly predictable because of the logical, modular organization ef
the knowledge bases. As we have seen, however, the speech grammar must be made highly
domain-specific to provide an acceptable accuracy rate, and semantic grammars are notorious for their
lack of easy extensibility and portability. Transferring the resulting system to a new application would
require completely discarding the old speech grammar and starting from scratch on a new one.

10

NRL REPORT 9515

Redundancy of Effort

The NLP system is organized as a series of interpreters of decreasing output bandwidth, each
applying a finer grain of discriminative knowledge than the one before it. Specifically, the lexical
analyzer takes as input any string of ASCII characters but recognizes only those that correspond to
sequences of English words; the parser recognizes only those English word sequences that are
syntactically well formed; and the semantic interpreter accepts only those parses that are meaningful.
Since the speech grammar must duplicate most of the lexical, syntactic, and semantic knowledge used by
the NLP modules downstream from it, the speech module acts like a narrow bandpass filter that transmits
only strings that are already lexically, syntactically, and semantically well formed. Because of the
limited recognition power of the speech module, the bandwidth of data input to the NLP system is as
narrow as, or even narrower than the bandwidth of data the system outputs. In effect the speech module
"usurps" the role of the NLP modules as recognizers, rendering their powerful type-checking and search
facilities redundant and reducing them to mere structure builders.

At present the NLP modules must still be invoked to produce the application-independent logical form
for translation into a FIS command. But since it is possible to have the speech module produce parse trees
of the strings it recognizes, it may be that the NLP components are not even needed for structure building
in this system, and they could be eliminated altogether. Since the speech grammar is a domain-specific
semantic grammar, the trees it generates might require only a small application-specific processor to be
mapped to the target (FIS command) language. Although this runs contrary to the portability approach
we have long advocated, we have shown that the necessity for a semantic grammar in the speech
component impairs true portability anyway.

Observations

In an ideal system, the speech module would not require its own independent grammar but would
interact with the other NLP software and use their knowledge bases to constrain its search. With that
sort of fully interleaved approach the aforementioned problems would be avoided. (This would be similar
to the "layered blackboard" approach used in some earlier research systems 171.) However, this approach
requires considerably more computation than the current approach, and it is not a practical option given
today's processing technology.

6. SUMMARY

Overall, the addition of speech recognition capabilities to the existing natural language interface was
successful. The interface remains flexible and easy to use, and input speed has increased. The ability
to speak commands into FIS frees the user's hands to manipulate tools or equipment, and with the
addition of speech output he or she would be able to move about while conducting the tests.

However, the limitations of the current speech recognition technology restrict the linguistic
capabilities of the natural language interface. For this particular application this is not a significant
problem; the linguistic restrictions are sufficiently offset by the improved usability and speed of the
interaction. For other more complex applications, the linguistic restrictions imposed by adding speech
recognition might be unacceptable, especially if the existing interface includes a sophisticated natural
language processing system. As speech recognition and computational technologies improve, we can
expect to see significant increases in the capabilities of speech recognition interfaces. Until then, the pros
and cons of adding speech recognition to an existing interface should be weighed carefully.

11

EVERETt, WAUCHOPE, AND PERZANOWSKI

REFERENCES

1. Pipitone, Dejong, Spears and Marrone, The FIS Electronics Troubleshooting Project in Expert
Systems Applications to Telecommunications, J. Liebowitz, ed. (Wiley and Sons, New York, 1988),
pp. 73-101.

2. Pipitone, Dejong, Spears, "An Artificial Intelligence Approach to Analog Systems Diagnosis," NRL
Report 9219, 1989.

3. R. Schoeffel, "FIS Ergonomic Interface Users Guide," 1988. (unpublished manuscript)

4. D. Perzanowski and B. Potter, InterFIS: Natural Language Interfacing to an Expert System Shell,
in Expert Systems World Congress Proceedings, J. Liebowitz, ed. (Pergamon Press, NY, 1991), 2,
pp. 1086-1094.

5. R. Grishman, "PROTEUS Parser Reference Manual," PROTEUS Project Memorandum #4, New

York University, New York, 1986.

6. N. Sager, Natural Language Information Processing (Addison-Wesley, Reading, MA), 1981.

7. L. D. Erman, F. Hayes-Roth, V.R. Lesser and D.R. Reddy, "The Hearsay-Il Speech-Understanding
System: Integrating Knowlege to Resolve Uncertainty", Computing Surveys, 12(2) (June 1980).

12

